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Why model uncertainty representations

v All current operational ensemble systems are underdispersive;

The rms error grows faster than the spread.
=> the best estimate of the true atmospheric state is on average

more often outside the range of predicted states than statistically
expected. (Buizza et al. 2005)

v" Small uncertainties in the initial state and NWP model lead to
forecast errors and flow-dependent predictability.
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Model uncertainties in short-range weather prediction

v Forecast error = IC error + Model error + LBC error

v" Model errors represented by multi-model, multi-physics, multi-
parameter, and stochastic schemes

v' Retrospective case studies using the AFWA’s mesoscale ensemble
prediction system (Hacker et al. 2011; Berner et al. 2011) showed
that

= Including a model-error representation leads to ensemble systems that
produce significantly better probabilistic forecasts than a control physics
ensemble that uses the same physics schemes for all ensemble
members.

= In overall, the stochastic kinetic-energy backscatter scheme is
comparable or superior to the multi-physics ensemble.

= The best performing ensemble system is obtained by combining the
multi-physics scheme with the stochastic kinetic-energy backscatter
scheme.



Model uncertainties in WRF/DART cycling

Control-physics (CP) ensemble: each ensemble member uses the same
physics configuration, but ensemble prior spread is adaptively inflated based
on the observation likelihood and the prior PDF right before the analysis step.

Multi-physics (MP) ensemble: each ensemble member uses a different set of
physics schemes.

Stochastic kinetic-energy backscatter (BS) ensemble: each ensemble member
IS perturbed by a stochastic forcing term that represents the statistical
fluctuations in the subgrid-scale fluxes.



Multi-Physics ensemble configuration

AFWA'’s Mesoscale Ensemble Prediction System (MEPS)

Member Physical parameterizations

(JME mem) Surface Microphysics PBL Cumulus LW_RA SW_RA
1 Thermal Kessler YSU KF RRTM Dudhia
2 Thermal WSM6 MYJ KF RRTM CAM
3 Noah Kessler MYJ BM CAM Dudhia
4 Noah Lin MYJ Grell CAM CAM
5 Noah WSM5 YSU KF RRTM Dudhia
6 Noah WSM5 MYJ Grell RRTM Dudhia
7 RUC Lin YSU BM CAM Dudhia
8 RUC Eta MYJ KF RRTM Dudhia
9 RUC Eta YSU BM RRTM CAM
10 RUC Thompson MYJ Grell CAM CAM




The Kalman Filter (KF)

Assume
> xt~ N(if, Pf); Gaussian forecast errors

> ¢~ N(0,R); Gaussian observation errors

KF analysis implements Bayes rule for Gaussians

> analysis equations:

x* =x/ + K(y —Hx/) ; P*=(1-KH)P/,
> Kalman gain

K=P/H'(HP'HY + R)!

Computationally difficult unless problem is small
> P/, P%are N, x N,, w/ N, = dimx



Ensemble Kalman Filter (EnKF)

 ENnKF analysis step

— As in KF analysis step, but uses sample (ensemble) estimates for
covariances => the huge matrix P'is never explicitly computed.

P'H WZ(X —x ) (Hx" —Hx")T

HPHT —N—Z(Hx ~Hx")(Hx" —Hx")"

i=1
— 1 — 1
where x' :—fo and Hx' =—Zfo
N i=1 N i=1

y = Hx' is the forecast, or prior observation.

— Output of EnKF analysis step is ensemble of analyses

 ENnKF forecast step

— Each member integrated forward with full nonlinear model to
provide flow-dependent background error covariance

— Monte-Carlo generalization of KF forecast step



Ensemble Kalman Filter (EnKF) in DART

« Data Assimilation Research Testbed (DART) is general software
for ensemble filtering:

— Assimilation scheme(s) are independent of model

— Interfaces exist for numerous models: WRF (including global and
single column), CAM (spectral and FV), others

— See http://www.image.ucar.edu/DAReS/DART/



http://www.image.ucar.edu/DAReS/DART/�

Experiment design

50°N DO1

Grids |
D1: 123 x 99 (45-km) o
D2: 163 x 106 (15-km)

41 levels, two-way nesting

Do2

I C/L BCS | 12[;"'&'\1' 110-"W - 1001"W | Q-D;W - BO;W
— 1°x1° GFS analyses were used for initialization in both domains

— 1°x1° GFS forecasts were used to generate lateral boundaries at 45-km grid
four times a day

Ensemble

- 50-member ensemble

- WRF/DART to generate analyses and forecast

Cycling period: 1-10 June 2008 (3-hrly)




Observations for data assimilation

 MADIS (Meteorological Assimilation Data Ingest System)
RAOB -u,v,t, td, surface altimeter

METAR - u, v, t, td, surface altimeter

Marine - u, v, t, td, surface altimeter

ACARS -u, v, t, td

— Surface observations: metar (for assimilation) and integrated
mesonet (for verification)
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Obs-space diagnostics (mesonet verification)
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Obs-space diagnostics (mesonet verification)
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pressure (hPa)

Obs-space diagnostics (sounding)
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An MCS case in summer’08

2008-06-08_21:00 UTC 2008-06-09_06:00 UTC




Ensemble spread (3-h forecast)

2008-06-08_18:00:00 UTC

MP
§ Lo TR §
N : pj"?.‘g“'; % ' A - 4o

= ,,;% -'.., g
-~ P

12 16 2 24 28 32 36 4 44 48 5.2
V_d02 prior spread

12 16 2 24 28 32 36 4 44 48 52

T_d02 prior spread



Analysis increment in ensemble mean

A-B at 2008060818




12-H accumulated rainfall at 15-km grid

2008-06-09_06:00:00 UTC

NCEP Stage
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Total precipitation [mm]



Summary for model errors in WRF/DART

The meso-scale ensemble system generally suffers from under-
dispersiveness.

Including model error representation improves the analysis and
the following forecast compared to the control-physics ensemble
that uses the same physics combination for all members.

The stochastic Kinetic Energy Backscatter scheme was well
tuned to improve the atmospheric state near the surface. The
SKEBS outperforms the multi-physics ensemble in the short-
term forecast.

Multi-physics ensemble needs to be more investigated for the
mean bias errors and the overdispersiveness near the surface
depending on the physics combinations.



Ongoing work at NCAR

SKEBS released with WRF3.3.

Development ongoing: plans to introduce flow-dependent
dissipation and vertical structure

Impact of multi-physics and stochastic backscatter scheme in
ensemble data assimilation

Understand differences between multi-physics and stochastic
representation physically

A perturbed physics-tendency scheme (Buizza et al., 1999) is
currently being tested (revisiting from earlier work)

Extend ensemble forecasts with different model error techniques
for probabilistic verification
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