

Model error representation in WRF/DART

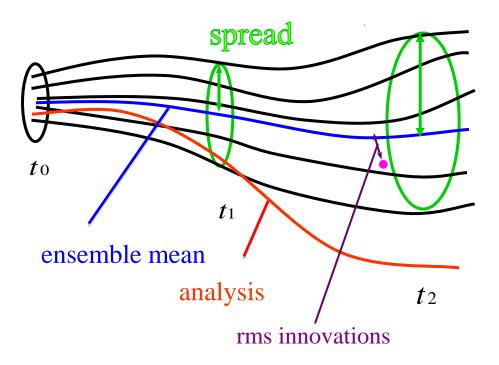
So-Young Ha, Judith Berner, Chris Snyder

MMM/NCAR

12th Annual WRF Users' Workshop (June 21-23, 2011)

Why model uncertainty representations

- All current operational ensemble systems are underdispersive; The rms error grows faster than the spread.
 => the best estimate of the true atmospheric state is on average more often outside the range of predicted states than statistically expected. (Buizza et al. 2005)
- Small uncertainties in the initial state and NWP model lead to forecast errors and flow-dependent predictability.



Model uncertainties in short-range weather prediction

- ✓ Forecast error = IC error + Model error + LBC error
- ✓ Model errors represented by multi-model, multi-physics, multiparameter, and stochastic schemes
- ✓ Retrospective case studies using the AFWA's mesoscale ensemble prediction system (Hacker et al. 2011; Berner et al. 2011) showed that
 - ⇒ Including a model-error representation leads to ensemble systems that produce significantly better probabilistic forecasts than a control physics ensemble that uses the same physics schemes for all ensemble members.
 - \Rightarrow In overall, the stochastic kinetic-energy backscatter scheme is comparable or superior to the multi-physics ensemble.
 - ⇒ The best performing ensemble system is obtained by combining the multi-physics scheme with the stochastic kinetic-energy backscatter scheme.

Model uncertainties in WRF/DART cycling

- Control-physics (CP) ensemble: each ensemble member uses the same physics configuration, but ensemble prior spread is adaptively inflated based on the observation likelihood and the prior PDF right before the analysis step.
- Multi-physics (MP) ensemble: each ensemble member uses a different set of physics schemes.
- Stochastic kinetic-energy backscatter (BS) ensemble: each ensemble member is perturbed by a stochastic forcing term that represents the statistical fluctuations in the subgrid-scale fluxes.

Multi-Physics ensemble configuration

• AFWA's Mesoscale Ensemble Prediction System (MEPS)

Member (JME mem)	Physical parameterizations					
	Surface	Microphysics	PBL	Cumulus	LW_RA	SW_RA
1	Thermal	Kessler	YSU	KF	RRTM	Dudhia
2	Thermal	WSM6	MYJ	KF	RRTM	CAM
3	Noah	Kessler	MYJ	BM	CAM	Dudhia
4	Noah	Lin	MYJ	Grell	CAM	CAM
5	Noah	WSM5	YSU	KF	RRTM	Dudhia
6	Noah	WSM5	MYJ	Grell	RRTM	Dudhia
7	RUC	Lin	YSU	BM	CAM	Dudhia
8	RUC	Eta	MYJ	KF	RRTM	Dudhia
9	RUC	Eta	YSU	BM	RRTM	CAM
10	RUC	Thompson	MYJ	Grell	CAM	CAM

The Kalman Filter (KF) ____

Assume

- $\triangleright \ \ \mathbf{x}^t \sim N(\overline{\mathbf{x}}^f, \mathbf{P}^f); \text{ Gaussian forecast errors}$
- $\triangleright \ \ \epsilon \sim N(\mathbf{0},\mathbf{R}); \text{ Gaussian observation errors}$

KF analysis implements Bayes rule for Gaussians

▷ analysis equations:

$$\overline{\mathbf{x}}^a = \overline{\mathbf{x}}^f + \mathbf{K}(\mathbf{y} - \mathbf{H}\overline{\mathbf{x}}^f) \quad ; \quad \mathbf{P}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^f,$$

▷ Kalman gain

$$\mathbf{K} = \mathbf{P}^{f} \mathbf{H}^{T} (\mathbf{H} \mathbf{P}^{f} \mathbf{H}^{T} + \mathbf{R})^{-1}$$

Computationally difficult unless problem is small

$$\triangleright$$
 \mathbf{P}^{f} , \mathbf{P}^{a} are $N_{x} \times N_{x}$, w/ $N_{x} = \dim \mathbf{x}$

- EnKF analysis step
 - As in KF analysis step, but uses sample (ensemble) estimates for covariances => the huge matrix P^f is never explicitly computed.

$$\mathbf{P}^{f}\mathbf{H}^{T} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}^{f} - \overline{\mathbf{x}^{f}}) (\mathbf{H}\mathbf{x}^{f} - \overline{\mathbf{H}\mathbf{x}^{f}})^{T}$$
$$\mathbf{H}\mathbf{P}^{f}\mathbf{H}^{T} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{H}\mathbf{x}^{f} - \overline{\mathbf{H}\mathbf{x}^{f}}) (\mathbf{H}\mathbf{x}^{f} - \overline{\mathbf{H}\mathbf{x}^{f}})^{T}$$
$$where \ \overline{\mathbf{x}^{f}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{f} \ and \ \overline{\mathbf{H}\mathbf{x}^{f}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{H}\mathbf{x}^{f}$$

 $y^f = \mathbf{H}\mathbf{x}^f$ is the forecast, or prior observation.

- Output of EnKF analysis step is ensemble of analyses
- EnKF forecast step
 - Each member integrated forward with full nonlinear model to provide flow-dependent background error covariance
 - Monte-Carlo generalization of KF forecast step

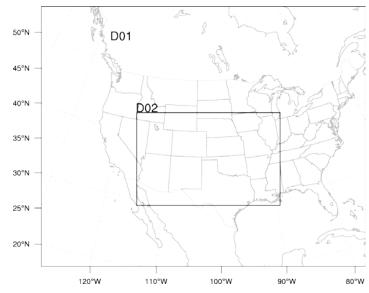
Ensemble Kalman Filter (EnKF) in DART

- Data Assimilation Research Testbed (DART) is general software for ensemble filtering:
 - Assimilation scheme(s) are independent of model
 - Interfaces exist for numerous models: WRF (including global and single column), CAM (spectral and FV), others
 - See http://www.image.ucar.edu/DAReS/DART/

Experiment design

<u>Grids</u>

D1: 123 x 99 (45-km) D2: 163 x 106 (15-km) 41 levels, two-way nesting



IC/LBCs

- 1°x1° GFS analyses were used for initialization in both domains
- 1°x1° GFS forecasts were used to generate lateral boundaries at 45-km grid four times a day

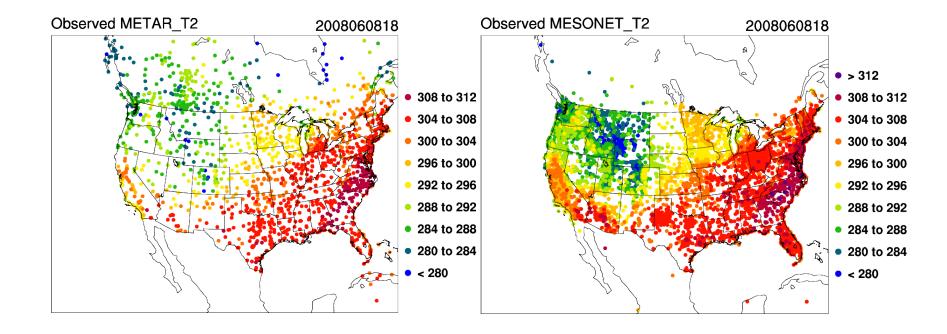
Ensemble

- 50-member ensemble
- WRF/DART to generate analyses and forecast

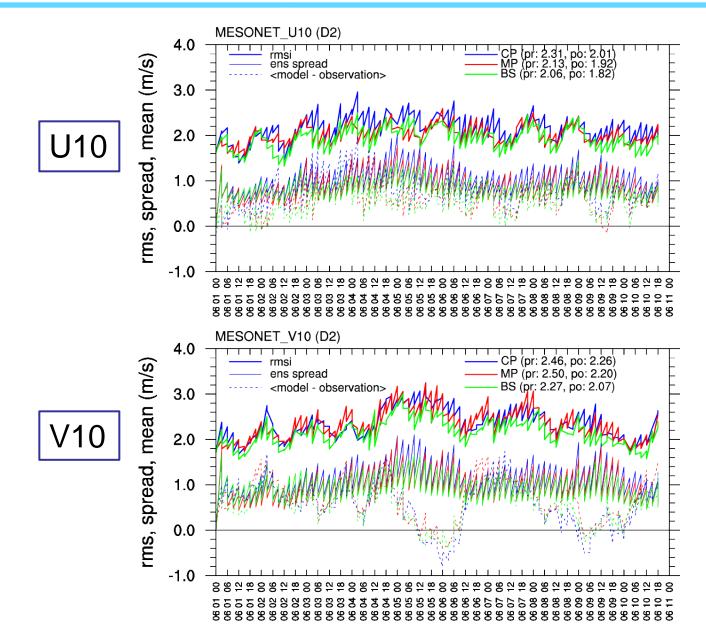
Cycling period: 1-10 June 2008 (3-hrly)

Observations for data assimilation

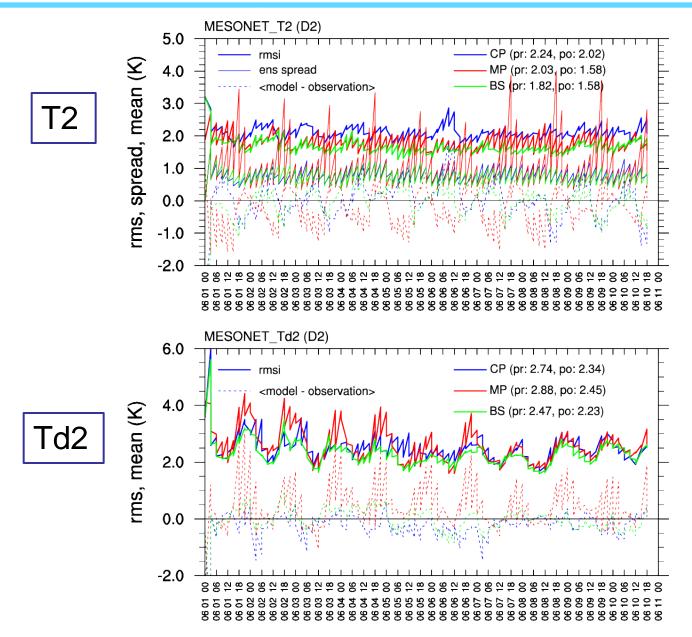
- MADIS (Meteorological Assimilation Data Ingest System)
 - RAOB u, v, t, td, surface altimeter
 - METAR u, v, t, td, surface altimeter
 - Marine u, v, t, td, surface altimeter
 - ACARS u, v, t, td
 - Surface observations: metar (for assimilation) and integrated mesonet (for verification)



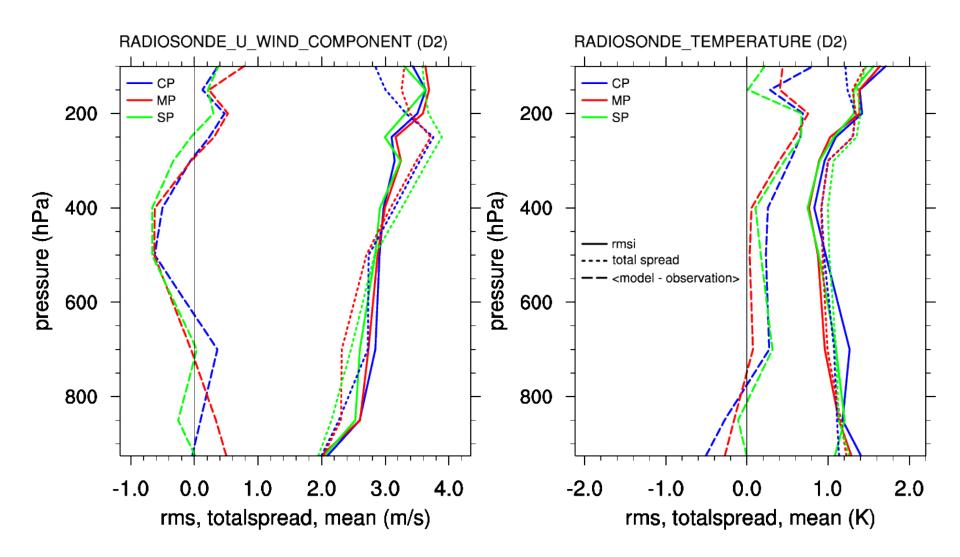
Obs-space diagnostics (mesonet verification)



Obs-space diagnostics (mesonet verification)



Obs-space diagnostics (sounding)

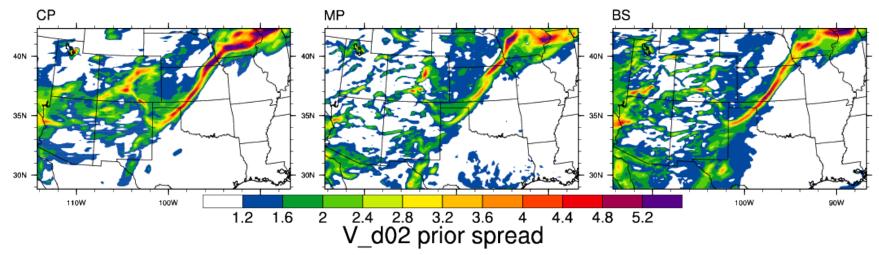


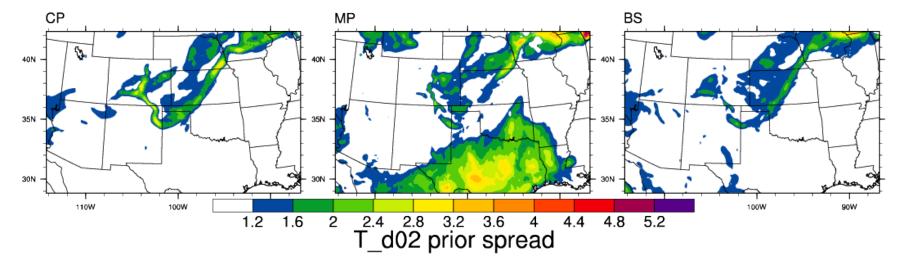
An MCS case in summer'08

2008-06-08_21:00 UTC 2008-06-09_06:00 UTC 112 56 68 93 104 66 12 84_039 28 029 91 077 68 069 91, 147 81_131 95,105 87 092 66 197_034 32 88,024 25 95,046 66 044 89 166 158 93 107 65 81_111 73

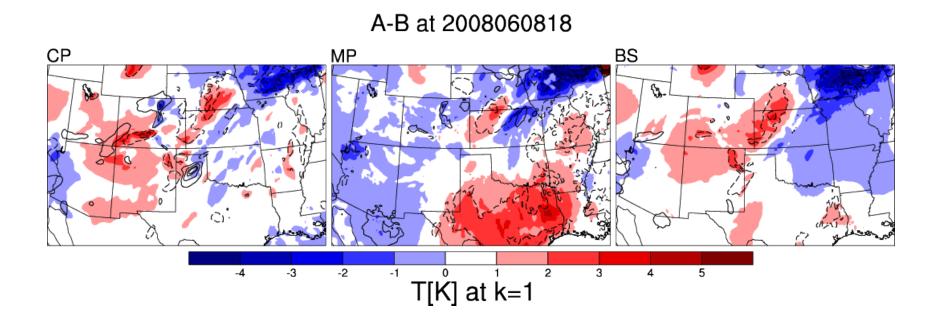
Ensemble spread (3-h forecast)

2008-06-08_18:00:00 UTC

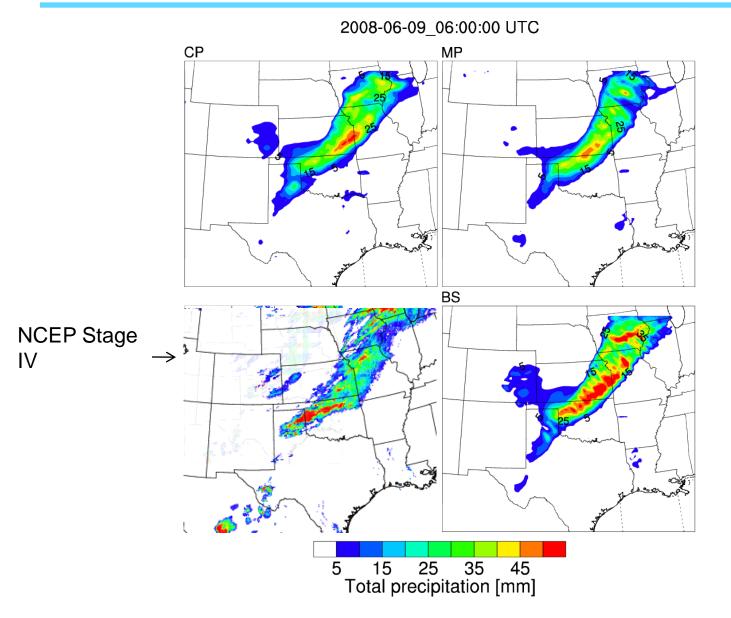




Analysis increment in ensemble mean



12-H accumulated rainfall at 15-km grid



Summary for model errors in WRF/DART

- The meso-scale ensemble system generally suffers from underdispersiveness.
- Including model error representation improves the analysis and the following forecast compared to the control-physics ensemble that uses the same physics combination for all members.
- The stochastic Kinetic Energy Backscatter scheme was well tuned to improve the atmospheric state near the surface. The SKEBS outperforms the multi-physics ensemble in the short-term forecast.
- Multi-physics ensemble needs to be more investigated for the mean bias errors and the overdispersiveness near the surface depending on the physics combinations.

- SKEBS released with WRF3.3.
- Development ongoing: plans to introduce flow-dependent dissipation and vertical structure
- Impact of multi-physics and stochastic backscatter scheme in ensemble data assimilation
- Understand differences between multi-physics and stochastic representation physically
- A perturbed physics-tendency scheme (Buizza et al., 1999) is currently being tested (revisiting from earlier work)
- Extend ensemble forecasts with different model error techniques for probabilistic verification